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a b s t r a c t

Forensic analysis requires the acquisition and management of many different types of

evidence, including individual disk drives, RAID sets, network packets, memory images,

and extracted files. Often the same evidence is reviewed by several different tools or

examiners in different locations. We propose a backwards-compatible redesign of the

Advanced Forensic Formatdan open, extensible file format for storing and sharing of

evidence, arbitrary case related information and analysis results among different tools.

The new specification, termed AFF4, is designed to be simple to implement, built upon the

well supported ZIP file format specification. Furthermore, the AFF4 implementation has

downward comparability with existing AFF files.

ª 2009 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Storing and managing digital evidence is becoming increas-

ingly more difficult, as the volume and size of digital evidence

increases. Evidence sources have also evolved to include

data other than disk images, such as memory images,

network images and regular files. Preserving such digital

evidence is an important part of most digital investigations

(Carrier and Spafford, 2004), and managing the evidence in

a distributed organization is now emerging as a critical

requirement.

This paper presents a framework for managing and storing

digital evidence. We first examine existing evidence

management file formats and outline their strengths and

limitations. We then explain how the proposed Advanced

Forensics Format (AFF4) framework extends these efforts into

a universal evidence management system. The detailed

description of the AFF4 proposal is then followed by concrete

real world use cases.

1.1. Prior work

In recent years there has been a steady and growing interest in

the actual file formats and containers used to store digital

evidence. Early practitioners created exact bit-for-bit copies

(commonly referred to as ‘‘dd images’’). More recently,

proprietary software systems for making and authenticating

‘‘images’’ of digital evidence have become common (e.g. B.S.

NTI Forensics Source, 2008; Ilook investigator, 2008; Guidance

Software, Inc., 2007). PyFlag (Cohen, 2008a) introduced

a ‘‘seekable gzip’’ format that allowed disk images to be stored

in a form that was compressed but allowed random access to

evidence data necessary for forensic analysis.
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The Expert Witness Forensic (EWF) file format was origi-

nally developed for Encase (Guidance Software, Inc., 2007), but

then adopted by other vendors (Kloet et al., 2008). The EWF file

format similarly compresses the image into 32 kb chunks

which are stored back to back in groupings inside the file. The

format employs tables of relative indexes to the compressed

chunks to improve random access efficiency. EWF volumes

have a maximum size limit of 2 Gb and therefore usually split

an image across many files. EWF provides for a small number

of predefined metadata fields to be stored within the file

format.

The Advanced Forensic Format (AFF) expanded on this idea

with a forensic file format that allowed both data and arbitrary

metadata to be stored in a single digital archive (Garfinkel

et al., 2006).

Both the AFF and EWF file formats are designed to store

a single image, and any metadata that implicitly refers to that

image such as sector size and acquisition date. Unlike EWF,

AFF employed a system to store arbitrary name/value pairs for

metadata, using the same system for both user-specified

metadata and for system metadata, such as sector size and

device serial number. For example, Aimage, the AFF hard disk

acquisition tool, not only stores the image, but additionally

stores a description of the tool itself, the version of AFFLIB

used to create the image, the computer on which the image

was made, the operator of the tool, the user supplied param-

eters supplied to the tool.

Schatz proposed a Sealed Digital Evidence Bags architecture,

facilitating composition of evidence and arbitrary evidence

related information, through a simple data model and globally

unique referencing scheme (Schatz and Clark, 2006).

1.2. This paper

An important advance of this work is the introduction of

storage transformation functions to the forensic storage

container. Prior works simply focused on forensically sound

storage of bit-streams, leaving the necessary activities of

translating low level storage into higher level abstractions at

the aggregate block (i.e. RAID), volume, and filesystem layers

in the domain of analysis tools, as transiently constructed

artifacts. In contrast AFF4 has mechanisms for describing

transformation in a flexible and concise way, allowing users to

view multiple transformations of the same data with little

additional storage cost. This mechanism is an important

enabler for inter-operable forensic tools. For example, carved

files may be described in terms of their block allocation

sequences from an image, rather than requiring the carved file

to be copied again.

This paper extends previous work on the Advanced

Forensic Format (AFF) by taking many of the concepts devel-

oped and designing a new specification and toolset. The AFF4

format is a complete redesign of the architecture. The new

architecture is capable of storing multiple heterogeneous data

types that might arise in a modern digital investigation,

including data from multiple data storage devices, new data

types (including network packets and memory images),

extracted logical evidence, and forensic workflow. The AFF4

format extends the format to make it the basis of a global

distributed evidence management system.

We call the new system AFF4, and use the phrase AFF1 to

refer to the legacy system developed by Garfinkel et al.1 The

publicly released AFF4 implementation, is able to read existing

AFF files.

2. The need for an improved forensic format

AFF1’s flexibility came from a data model of forensic data and

metadata stored as arbitrary name/value pairs called

segments. For example, the first 16 MB of a disk image is stored

in a segment called page0, the second 16 MB in a segment

called page1, etc. Because of this flexibility, it was relatively

easy to extend AFF1 to support encryption, digital signatures,

and the storage of new kinds of metadata such as chain-of-

custody information (Garfinkel, 2009).

2.1. AFF limitations

We observed a number of practical problems in the underlying

AFF1 standard and Garfinkel’s AFFLIB implementation:

� While AFF1’s design stores a single disk image in each

evidence file, modern digital investigations typically involve

many seized computers or pieces of media.

� The data model of AFF1 enabled storing metadata related to

the contained image as (property, value) pairs. This data

model does not, however, support expressing arbitrary

information about more than one entity.

� AFF1 has no provision for storing memory images or inter-

cepted network packets.

� AFF1 has no provisions for storing extracted files that is

analogous to the EnCase ‘‘Logical Evidence File’’ (L01)

format, or for linking evidence to web pages.

� AFF1’s encryption system leaks information about the

contents of an evidence file because segment names are not

encrypted.

� AFF1’s default compression page size of 16 MB can impose

significant overhead when accessing NTFS Master File

Tables (MFT), as these structures tend to be highly frag-

mented on systems that have seen significant use.

� Although the AFF1 specification calls for a ‘‘table of

contents’’ similar to the Zip (Katz, 2007) ‘‘central directory’’

that is stored at the end of AFF files, Garfinkel never

implemented this directory in the publicly released AFF1

implementation, AFFLIB. As a result, every header of every

segment in an AFF file needs to be read when a file is opened.

In practice this can take up to 10–30 s the first time a large

AFF file is opened.

� AFF1’s bit-level specification is essentially a simple

container file specification. Given that there are other

container file specifications that are much more widely

supported with both developer and end-user tools, it

seemed reasonable to migrate AFF from its home-grown

format to one of the existing standards.

1 Although Garfinkel never changed the AFF bit-level specifica-
tion, Garfinkel released AFFLIB implementations with major
version numbers 1, 2 and 3. We therefore call our system AFF4 to
avoid confusion.
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2.2. Global distributed evidence management

While AFF1 was designed for use on a single machine that

could both image evidence and perform analysis, many

modern practitioners work in distributed environments in

which imaging and analysis takes place in multiple locations

and is performed by multiple individuals.

Global distributed evidence management requires more

than simply tracking the movement of disk images: it requires

approaches for sharing evidence to multiple disconnected

evidence, allowing offline work, and then seamlessly recom-

bining the work products of the analysts in a third security

domain.

Managing evidence in a globally distributed system

requires the use of globally unique identifiers to ensure no

name collisions can occur with disconnected locations. AFF1

assigns each piece of evidence a unique 128-bit identifier

called a GID but did not make it clear when this identifier

should be changed and when it should remain the same.

Consider the typical usage scenario depicted in Fig. 1, of

a volume containing a disk image. This volume is distributed

to two independent analysts, Alice and Bob. Alice may find

and extract individual files, while Bob may correlate infor-

mation in the evidence file with other data that is available on

departmental servers. Although in some environments Alice

and Bob may be able to work on a shared file that is located on

a server, in other environments there will not be sufficient

connectivity. Instead, each analyst will be required to store

the information in their own evidence file; these files will then

be recombined at a later point in time.

In this case they can each create a new volume which

extends the original volume and save their analysis on this

new volume. Now they only need to share this new volume

with other analysts who also have a copy of the old volume to

interchange their findings.

This is made possible because each volume is indepen-

dent of one another, but is still viewed as part of a bigger

evidence set.

3. Introducing AFF4

This section discusses the AFF4 terminology and architecture.

The AFF4 design is object oriented, in that a few generic

objects are presented with externally accessible behavior. We

discuss a number of implementations of these high level

concepts and show how these can be put together in common

usage cases.

� An AFF Object is the basic building block of our file format. AFF

Objects have a globally unique name (URN) as described in

(Sollins and Masinter, 1994; Fielding, 1995, Hoffman et al.,

1998). The name is defined within the aff4 namespace, and is

made unique by use of a unique identifier generated as per

RFC4122 (Leach et al., 2005).

� A Relation is a factual statement which is used either to

describe a relationship between two AFF Objects, or to

describe some property of an object. The relation comprises

of a tuple of (Subject, Attribute, Value). All metadata is

reduced to this tuple notation.

� An Evidence Volume is a type of AFF Object which is responsible

for providing storage to AFF segments. Volumes must provide

a mechanism for storing and retrieving segments by their

URN. We discuss two volume implementations below,

namely the Zip64 based volume and the Directory based volume.

� A stream is an AFF Object which provides the ability to seek

and read random data. Stream objects implement abstracted

storage, but must provide clients the stream like interface.

For example, we discuss the Image stream used to store large

images, the Map stream used to create transformations and

the Encrypted stream used to provide encryption.

� A segment is a single unit of data written to a volume. AFF4

segments have a segment name provided by their URN,

a segment timestamp in GMT, and the segment contents.

Segments are suitable for storing small quantities of data,

and still present a stream interface.

� A Reference is a way of referencing objects by use of

a Uniform Resource Identifier (URI). The URI can be another

AFF Object URN or may be a more general Uniform Resource

Locator (URL), such as for example a HTTP or FTP object.

This innovation allows objects in one volume to refer to

objects in different volumes, facilitating data fusion and

cross referencing.

� The Resolver is a central data store which collects and resolves

attributes for the different AFF Objects. The Resolver has

universal visibility of objects from all volumes, and therefore

guides implementations in resolving external references.

4. Metadata and the universal resolver

Management of evidence requires an effective identification,

with practitioners currently employing acquisition time met-

adata such as case identifiers and description fields in the EWF

file format; file and directory naming schemes, and labeling of

evidence container hard drives. Evidence may also be refer-

enced by external means in an inconsistent way. For example,

in an investigator’s case note a disk image may be referred to

Fig. 1 – A typical usage scenario. Both Alice and Bob receive

an AFF volume but work independently. Rather than

modifying the volume, they each create their own local

volumes and save their results into those files. They can

now exchange the smaller new volumes and effectively

merge their results into the same AFF set when they are

finished.
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by the name of the suspect (e.g. Joe’s hard disk), the case

number or dates.

Such individuation schemes may be problematic when

automatically managing evidence. For example, at acquisition

time a suitably unique individuator may not be selected. If

that occurred, at analysis time evidence container files may

need to be renamed to avoid name collisions.

The AFF4 design adopts a scheme of globally unique

identifiers for identifying and referring to all evidence. We

define an AFF4 specific URN scheme, which we call the AFF4

URN. URN’s of this scheme use the namespace (Sollins and

Masinter, 1994) ‘‘aff4’’ and therefore begin with the string

‘‘urn:aff4’’. AFF4 URNs are then be made unique by use of

a unique identifier generated as per RFC4122 (Leach et al.,

2005). For example, an AFF4 URN might be urn:aff4:bcc02ea5-

eeb3-40ce-90cf-7315daf2505e.

The AFF4 model treats metadata as an abstract concept

which may exist independently from the data itself. We term

metadata to be a set of statements about objects, written in

tuple notations (Subject, Attribute, Value), where Subject is the

URN of the object the statement is made about. An Attribute can

be any kind of value or relationship, such as the sector size of

a device, a device capacity, or the name of the person who

performed an imaging operation. A Value is the value of the

attribute, which is either another URN, or some textual value.

Using this system we are able to store arbitrary attributes about

any object in the AFF4 universe. Additionally, as these state-

ments are universally scoped, they may be stored anywhere.

The AFF4 design extends beyond the management of

a single volume, stream or image to a universal system for

managing data of many types. This necessarily means that

a single running instance is generally unable to have visibility

of the entire AFF4 universe. For example, if a volume is opened

which contains a Map Stream targeting a stream stored in

a different volume, it is not generally possible to tell where

that volume is actually stored.

To provide this global visibility of metadata we define

a central metadata management entity, named the Universal

Resolver. The Universal Resolver contains all the metadata

about the AFF4 universe, that is to say it is able to resolve

queries for any attribute about any URN in the universe.

Although the resolver has complete visibility of all attri-

butes, it is still useful to store metadata within the volume

itself, particularly data pertaining to the volume itself. If we

did not store the metadata within the volume itself, then the

volume would not be accessible to implementations which do

not have this metadata.

To this end we define a way for serializing metadata state-

ments (or tuples) into a standard format which implementations

can load into their respective resolvers when parsing the

volume. Relations can be stored in segments having a URN

ending with ‘‘properties’’. The AFF4 implementation loads these

segments automatically into the Universal Resolver.

Relations are stored within the properties segment one per

line, with the subject URN (encoded according to RFC1737), fol-

lowed by whitespace and the attribute name. This is then fol-

lowed by the equal sign and the UTF8 encoding of the value. An

example propertiesfile foran Image Stream isshown inListing 1.

It is important to stress that the properties file is simply

a serialization of statements into volume segments. The

statements may exist without being stored in a volume (for

example, being stored on an external SQL server). Alterna-

tively, these statements may be stored in some other way

inside or outside the volume (e.g. SQLite database files).

When the volume is loaded, the AFF4 implementation

automatically loads any properties files and populates its

Universal Resolver with the information visible to it. AFF4

provides a mechanism to use an external resolver as welldfor

example, we have implemented a resolver that stores Attri-

butes in a MySQL database to provide for a persistent

Universal Resolver that shares information between different

instances on the same network.

Although the Universal Resolver should be thought of as

a truly universal entity, the library provides a local resolver

which is available to the running instance. As the library

explores different volumes, relations are added to the local

resolver. This means that the AFF4 library does not neces-

sarily need to have an ideal Universal Resolver, but can

approximate this by use of a local resolver. The local

resolver can be primed in advance by the user, by loading

various volumes which may be needed to resolve internal

references.

Each URN within the AFF4 universe must have an

‘‘aff4:type’’ attribute to denote the type of the Object.

Objects may also have a the ‘‘aff4:interface’’ attribute to

denote what kind of interface they present (e.g. stream or

volume).

5. Volumes

The volume object is responsible for providing storage for

segments. Segments are stored and retrieved using their

URNs. We describe two different implementations of volume

objects, namely the Directory Volume and the ZipFile Volume. It

is possible to convert from one implementation to another

easily, without affecting any external references.

It is important to emphasize that Volumes are merely

containers which provide storage for segments. There is no

restriction of which segments can be stored by any particular

volume. For example, the segments which make up a single

Image stream may be stored in a number of volumes (splitting

the image in some way among them). Similarly, the segments

representing a number of streams may be stored in the same

volume.

5.1. Directory volumes

The Directory Volume is the simplest type of volume. It simply

stores different segments based on their URNs in a single

directory. Since some filesystems are unable to represent

URNs accurately (e.g. Windows has many limitations on the

types of characters allowed for a filename), the Directory

Volume encodes URNs according to RFC1738 (Berners-Lee

et al., 1994); non-printable characters are escaped with a %

followed by the ASCII ordinal of the character.

The Directory Volume uses the aff4:stored attribute to

provide a base URL. The URL for each segment is then con-

structed by appending the escaped segment URN to the base

URL. Note that there is no restriction on what type of URL this
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can be, so it may be a location on a filesystem (e.g. file:///some/

directory/) or a location on a HTTP server (e.g. http://intranet.

server/some/path). In this way its possible to move the entire

volume from a filesystem to a web server transparently.

The Directory Volume stores its own URN in a special

segment named ‘‘__URN__’’ at the base of the directory.

5.2. Zip64 volumes

For AFF4, we have changed the default volume container file

format to Zip64 (Katz, 2007). There are many reasons for this

decision:

� There is already wide support for the Zip and Zip64 formats.

By migrating to these formats, we can take advantage of the

rich number of user and developer tools already available.

The volume may be inspected using any number of

commercial or open source zip application (e.g. Windows

Explorer natively supports Zip files as can be seen in Fig. 3,

Zip64 is supported natively by Java, Python and PERL).

� Zip64 libraries are readily available making proprietary

implementations of interfaces to the AFF4 volume format

simple to write. For example, a simple python program to

dump out an Image stream (Section 6.1) is illustrated in

Listing 2.

Fig. 2 shows the basic structure of a Zip archive. As can be

seen, the archive consists of a Central Directory (CD) locatedat the

end of the archive. The CD is a list of pointers to individual File

header structures locatedwithin thebodyofthe archive.Headers

are then followed by the file data, after it has been compressed

by the appropriate compression method (as specified in the

header). Each archived file is optionally followed by a Data

Descriptor describing the length and CRC of the archived file.

Using the data descriptor field allows implementations to write

archives without needing to seek in the output file. This allows

Zip files to be written to pipes for example, sending an image

over the network using netcat or ssh. AFF4 always uses the data

description header to ensure volumes are written continuously

without needing to seek in the output file.

Listing 1

Example properties files for several AFF4 objects (URNs are shortened for illustration).

Directory Volume:

urn:aff4:f901be8e-d4b2 aff4:stored¼ http://../case1/
urn:aff4:f901be8e-d4b2 aff4:type¼ directory

ZipFile Volume:

urn:aff4:98a6dad6-4918 aff4:stored¼ file:///file.zip
urn:aff4:98a6dad6-4918 aff4:type¼ zip

Image Stream:

urn:aff4:83a3d6db-85d5 aff4:

stored¼ urn:aff4:f901be8e-d4b2
urn:aff4:83a3d6db-85d5 aff4:chunks_in_segment¼ 256
urn:aff4:83a3d6db-85d5 aff4:chunk_size¼ 32 k
urn:aff4:83a3d6db-85d5 aff4:type¼ image
urn:aff4:83a3d6db-85d5 aff4:size¼ 5242880

Map Stream:

urn:aff4:ed8f1e7a-94aa aff4:target_period¼ 3
urn:aff4:ed8f1e7a-94aa aff4:image_period¼ 6
urn:aff4:ed8f1e7a-94aa aff4:blocksize¼ 64 k
urn:aff4:ed8f1e7a-94aa aff4:

stored¼ urn:aff4:83a3d6db-85d5
urn:aff4:ed8f1e7a-94aa aff4:type¼ map
urn:aff4:ed8f1e7a-94aa aff4:size¼ 0xA00000

Link Object:

map aff4:target¼ urn:aff4:ed8f1e7a-94aa
map aff4:type¼ link

Identity Object:

urn:aff4:identity/41:13 aff4:common_name¼ /C¼ US/ST¼ CA/L¼ SanFrancisco/O¼ Fort-Funston/CN¼ client1/
emailAddress¼ me@myhost.mydomain
urn:aff4:identity/41:13 aff4:type¼ identity
urn:aff4:identity/41:13 aff4:statement¼ 00000000
urn:aff4:identity/41:13 aff4:x509¼ urn:aff4:identity/41:13/cert.pem
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It is important to note that AFF4 only requires that the

volume be capable of storing multiple named segments of

data. Although our AFF4 implementation uses the Zip64 file

format as an underlying storage mechanism, our system also

supports legacy AFF1 volumes as well as Expert Witness

Evidence files (Kloet et al., 2008).

We ignore Zip64’s built-in support for splitting archives

into multiple Zip files. Instead, our implementation treats

each volume as a complete and stand-alone Zip file. The AFF4

implementation then considers the segments contained

within as belonging to the universal collection. This provides

the ability to split a stream across volumes automatically, as

different segments within the same stream may be stored in

different volumes.

Zip64 also defines encryption and authentication exten-

sions. We do not use them due to the restrictions imposed on

their use and because they lack the functionality that is

important for a forensic user. Instead, we use AFF4’s digital

signature facilities for integrity and non-repudiation, and we

introduce a new stream based encryption scheme for

ensuring data privacy (Section 6.4).

Although there are numerous Zip implementations avail-

able today, we have created our own implementation. There

are many reasons to develop our own Zip64 implementation

for AFF4:

� The commonly available Zip implementations written in C

do not implement the Zip64 extensions. These extensions

are required to support Evidence Volumes larger than 2 GB.

� Simple Zip implementations might rescan the Central

Directory for each segment request. Since in practice there

can be a large number of segments in a volume, it is advisable

to have a Zip64 implementation that is optimized to storing

thousands (or even hundreds of thousands) of segments in an

efficient data structure. In fact our implementation uses the

Universal Resolver itself to store the parsed central directory

information, which means that in most cases we do not even

need to scan the Central Directory at all.

� While the Zip specification duplicates data found in the

Central Directory entry in each File Header (such as filename,

size, CRC etc), many implementations that we have examined

only populate this information in one of these places. In the

interest of robustness, we wanted to ensure that data stored

in both locations would be populated to allow recovery of at

least some evidence that might exist in damaged volumes. If

the central directory is lost, it is possible to scan through the

volume, and locate all the Zip64 file headers. Then it is

possible to repair and reconstruct the central directory.

� Our implementation supports simultaneous access by

multiple readers and writers. Since our system requires all

metadata to be shared through the Universal Resolver, this

lends itself to providing Universal Locking on a per Object

basis. So for example, if one process wants to add a new

segment into a Zip volume, they can lock it via the Resolver,

add the segment and unlock the volume object in the

Fig. 2 – The basic structure of a Zip archive. Also shown is

how new archive members are added to an existing Zip

File. The Central Directory is overwritten by the new

member, and a new Central Directory is written on the end.

Listing 2

Sample Python code to dump out an Image Stream. As can be seen the chunk index segment is used to slice the data segment into chunks.

The chunks are decompressed and written to the output file.

volume¼ zipfile.ZipFile(INPUT_FILE)
outfd¼ open(OUTPUT_FILE,‘w’)
count¼ 0
while 1:

idx_segment¼ volume.read(STREAMþ‘‘/%08d.idx’’%count)
bevy¼ volume.read(STREAMþ‘‘/%08d’’count)
indexes¼ struct.unpack(‘‘<’’ þ ‘‘L’’ *

(len(idx_segment)/4), idx_segment)

for i in range(len(indexes)-1):

chunk¼ bevy[indexes[i]:indexes[iþ 1]]
outfd.write(zlib.decompress(chunk))

count þ¼ 1
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resolver, stopping concurrent access by other programs,

even on different machines.

6. Streams

The Stream system provides random access to an abstract

representation of a body of data. Our implementation allows

the segments in a stream to be operated on as if they were

a single file by supporting the traditional POSIX-like func-

tionality of open(), seek(), write(), and read(). All streams

also have a ‘‘size’’ attribute to denote the last byte address-

able within the stream. This is required in order to support the

POSIX whence attribute which may require seeking from the

end of the stream.

The following sections describe a number of types of

streams. It is important to note that clients of our imple-

mentation do not care how a particular stream is imple-

mented. Streams are opened by their URNs, and the library

itself ensures they provide the Stream interface. So for

example, users do not care if a stream is a Map Stream or an

Image Streamdthe interface provided is the same.

6.1. The image stream

The AFF4 Image Stream stores a single read-only forensic data

set. For example, this stream might contains a hard disk

image, a memory image or a network capture (in PCAP

format). Image streams have an aff4:type attribute of image.

Storage for the data is done by using multiple data

segments stored on various volumes. Data segment URNs are

derived by appending an 8 digit, zero padded decimal integer

representation of an incrementing id to the stream URN

(e.g. ‘‘urn:aff4:83a3d6db-85d5/00000032’’). Each data segment

is called a bevy and stores a number of compressed chunks

back to back.

The chunk index segment is a segment containing a list of

relative offsets to the beginning of each chunk within the

bevy. The chunk index segment URN is derived by appending

the bevy URN with ‘‘.idx’’. This is illustrated in Fig. 4.

Image streams specify the chunk_size attribute, as the

number of image bytes each chunk contains (chunk size

defaults to 32 kb). Also specified is the chunks_per_segment

attribute which specifies how many chunks are stored in each

bevy. Each chunk is compressed individually using the zlib

compress algorithm. This general structure of storing chunks

within larger segments is similar to the technique used by the

Expert Witness file format (EWF) used by EnCase (Keightley,

2003) and implemented by the open source libewf (Kloet et al.,

2008) package. This improvement from AFF1’s 16 MB segment

size results in a better match between requested size and the

minimum size required for decompression. Less data is needed

to be decompressed unnecessarily where reading small sectors

randomly, leading to vast performance improvements.

6.2. The map stream

Linear transformations of data are commonplace in forensic

analysis. For example, a file is often simply a collection of bytes

drawn from an image, while a TCP/IP stream is simply a collec-

tion of payloads from selected network packets. Sometimes the

same data may be viewed in a number of waysdfor example

a Virtual Address Space is a mapping of the Physical Address

Space through a page table transformation (Tanenbaum, 2008).

Zero storage carving (2006) is a way of specifying carved files in

terms of a sequence of blocks taken from the image; Cohen

extended this concept to an arbitrary mapping function (Cohen,

2008b, 2007) which can be used to describe arbitrary mappings

of carved files within a single image.

In this work we extend the mapping function concept to

allow a single map to draw data from arbitrary streams (called

targets). This transform is implemented via the Map stream.

The mapping function is described in a segment named by

appending ‘‘/map’’ to the stream URN. The segment data

consists of a series of lines, each containing a stream offset,

a target offset and a target URN. Offsets are encoded using

decimal notation.

Denoting the stream offset by x, and the target offset by y,

the Map specifies a set of points (Xi, Yi, Ti). Read requests for

a byte at a mapped stream offset x can then be satisfied by

reading a byte from target Ti at offset y given by:

y ¼ ðx� XiÞ þ Yi cx˛½Xi;Xiþ1Þ (1)

For example, consider the following map:

To read this stream we satisfy read requests of offsets

between 0 and 4095 in the stream from offset 0 to offset

Fig. 4 – The structure of Image Stream Bevies. Each bevy is

a collection of compressed chunks stored back to back.

Relative chunk offsets are stored in the chunk index

segment.

Fig. 3 – An Image stream browsed from Windows Explorer.

Basic access to the evidence volume can be made using

familiar tools improving transparency.
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4095 in urn:aff4:83a3d6db-85d5. Requests for bytes between

4096 and 8191 are fetched from urn:aff4:f901be8e-d4b2 from

offset 10000. Finally bytes after 8192 (until the specified size

of the stream) are fetched from offset 5000 in urn:af-

f4:83a3d6db-85d5.

In order to efficiently express periodic maps such as those

found in RAID arrays, the Map stream may be provided with

two optional parameters: a target_period (Tp), and stream_period

(Sp). If specified, the above relation becomes:

p :¼ floor
�

x
Sp

�

x0 :¼ mod
�
x; Sp

�
y :¼ ðx0 � XiÞ þ Yi þ p� Tp

Where mod is the modulus function and floor signifies integer

division. For example consider Listing 3, which corresponds to

a 3 disk RAID-5 array.

6.3. The HTTP stream

Arguably the most ubiquitous protocol for information

sharing is the HTTP protocol (Fielding et al., 1999). The

protocol features mature authentication and auditing and is

fast and easy to set up with numerous web server imple-

mentations available on the market. The HTTP protocol is also

designed to operate across a wide range of network architec-

tures and is therefore more deployable than traditional file

sharing protocols.

For these reasons it is desirable to allow the HTTP protocol

to be used in facilitating the sharing of evidence files between

investigators. Luckily, the HTTP protocol fits naturally within

the URN based scheme adopted by AFF4, since the HTTP

Universal Resource Locator (URL) scheme is a subset of the

URN scheme.

For this reason, URLs may be used interchangeably with

a URN within the AFF4 universe. For example, the aff4:stored

attribute of a volume may be specified as a URL (e.g. http://

intranet/123453/). AFF4 provides transparent support for

HTTP and FTP URLs by means of the Curl HTTP library

(Various, 2009). The HTTP Stream, therefore satisfies read

requests by making HTTP requests to the web server. We use

the Content-Range HTTP header to request exactly the byte

range the client is interested in. This allows efficient network

transport as we do not need to download unnecessary data,

we just request those chunks the client application requires.

Our implementation also enables direct writing to a HTTP

URL using the WebDav extensions to HTTP (Goland et al.,

1999). The HTTP stream also supports the File Transfer

Protocol (FTP) and HTTPS (Secure Sockets LayerdSSL) proto-

cols transparently, as provided by the Curl library.

6.4. Encrypted streams

Encryption is an important property in an evidence file format.

In particular, multiple streams may be present in the file set,

and often different access levels are desired. For example, for

evidence set containing both network captures and disk

images it may be desirable to limit access to streams based on

legal authorizations, even though the same set is distributed

to a number of people.

Although the Zip64 standard specifies encryption, it is not

suitable for our purposes since it encrypts each segment sepa-

rately, and does not specify a sufficiently flexible scheme (e.g.

support for PKI or PGP keys). Segment based encryption may

lead to information leakage when segments are compressed, as

the uncompressed size of the segment may be deduced.

AFF4 therefore introduces a new encryption scheme, the

Encrypted Stream. The Encrypted Stream provides transparent

encryption and decryption onto a single target stream. The

target stream actually stores the encrypted data, and read

requests fromthestream aresatisfiedbydecrypting therelevant

data from this backing stream. The encrypted stream itself does

not store any data at alldall data is stored on its target stream.

The Encrypted Stream may contain any data at all,

including disk images, network captures or memory images. It

is useful however, to store an entire AFF4 volume within the

Encrypted stream. This provides block level encryption for the

contained AFF4 volume (which might contain arbitrary

streams). This approach is illustrated in Fig. 5.

The result is that a number of AFF4 volumes are used as

Container Volumes to provide storage for Encrypted Streams.

The main Embedded Volume, which actually contains data is

stored within the Encrypted Stream, effectively distributed

throughout the container volumes. Note that the outer

Volume may contain several Encrypted Streams and therefore

contain multiple AFF4 Encrypted Volumes. Container

Volumes may contain non-encrypted streams as well, and

may implement different encryption schemes and keys for

each Encrypted stream. This effectively allows arbitrary

access policies to be implemented as only volumes which can

be accessed can be read.

0,0,urn:aff4:83a3d6db-85d5

4096,10000,urn:aff4:f901be8e-d4b2

8192,5000,urn:aff4:83a3d6db-85d5

Fig. 5 – Embedding an encrypted AFF4 volume within an

Encrypted Stream. The container volume contains an

encrypted stream backed by an image stream which is also

stored in the container. Once the encrypted stream is

opened, the volume stored on its image stream is

accessible. Now it is possible to see the secret image

stream stored within the volume.
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6.5. The link object

Although the URN of a stream names it unambiguously in the

AFF4 universe it is difficult to use and communicate due to its

random nature. Most investigators would prefer to use

a shorter name which might well represent the image better

in their minds (e.g. a case name or warrant number).

A Link object has a aff4:target attribute. When the Link

object is opened, the object named by this attribute is

returned. This allows images with complex names to be

referred to via short, meaningful names. In practice both

Image Streams and Link Objects are automatically created by

imaging tools, so users can always refer to the Image stream

via the simplified Link name.

7. Identity object

AFF4 defines a Statement as a collection of relations, or

(subject, attribute, value) tuples. Listing 4 illustrates a collec-

tion of relations encoded in the standard AFF4 notation

(SHA254 hashes are base64 encoded).

The statement expresses a set of attributes of other AFF4

objects, and in particular the attribute of SHA256 hash is

expressed (but other attributes may also be expressed).

Digital signatures have been used in previous forensic file

formats (such as AFF1) to provide authentication and non-

repudiation of forensic evidence. In essence, a when a person

signs an object they are vouching for its authenticity. Simi-

larly, when a person signs a Statement, they are vouching for

its authenticity. This concept is similar to the Bill of Material

(BOM) from AFF1.

An AFF4 Identity object represents an entity, currently

described by way of an X509 certificate. The URN of an identity

object is the certificate’s fingerprint, and is therefore unique to

the certificate. Identity objects contain aff4:statement attri-

butes which refer to AFF4 streams containing statements. The

identity object also contains a copy of the certificate used to

sign the statements.

To verify the signatures, the AFF4 library loads the stored

certificate, then checks the signature for each statement. If

a statement is verified (i.e. deemed as correct according to the

identity), the relations within it are checked. Note that it is

possible for multiple identities to sign the same data.

8. Usage scenarios

In this section we describe how AFF4 may be used in various

situations. Since the AFF4 framework implements a distrib-

uted evidence management system, we demonstrate its use

by a fictitious multinational corporation with offices in Los

Angeles and New York. Each office has its own computer

forensics lab and is connected via a WAN.

8.1. Using distributed evidence

An investigation is conducted by the New York team. The case

relates to a hard disk Image stream stored inside a volume, in

turn stored on the NY evidence server at URL http://ny.wan/

evidence1.aff4. The team requires an analyst (Bob) in LA to

assist with their analysis. The LA analyst types2: This

command causes the local AFF4 implementation to:

1) Contact the universal resolver asking where ‘‘NY case 1’’ is

stored.

2) The universal resolver replies that it is a symbolic link to

a stream called ‘‘urn:aff4:1234’’ stored within the volume

‘‘urn:aff4:9876’’. Further queries reveal that the volume is

located at http://ny.wan/evidence1.aff4.

3) The local AFF4 library then directly accesses the volume at

the given URL. Note that the entire volume is not copied,

instead specific chunks are retrieved on an as needed

basis.

The overall effect is that the user in LA is able to directly

access the disk image specified using a friendly name, and

stored at a remote location easily.

8.2. Load redistribution

In the previous scenario, Bob becomes involved in this

case, and wishes to download the entire image locally to

http://la.wan/evidence1.aff4. The Universal Resolver now

has two possible locations for the same volume URN,

since there are two copies in existence. Based on pre-

determined distance metrics, the resolver directs requests

from Bob to the LA copy, while Alice is redirected to the

NY copy. This load redistribution can be used for optimal

management of evidence storage in a transparent way.

Analysts are not aware of where the evidence is physically

stored, and it appears as though all evidence is always

available.

If Alice’s local NY copy is now lost, Alice’s local AFF4 library

will fail to open the NY URL, and will automatically fall back to

the copy stored in LA. This will require access across the WAN,

Listing 3

A Map stream that corresponds to a 3 disk RAID-5 array. The

targets are URNs for the respective disks. Note that map coor-

dinates are given in multiples of block size.

aff4:block_size¼ 64 k
aff4:stream_period¼ 6
aff4:target_period¼ 3
0,0,disk1

1,0,disk0

2,1,disk2

3,1,disk1

4,2,disk0

5,2,disk2
2 Fls is the file listing command which is part of the Sleuthkit.
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which will be slower, but provides a kind of distributed fail

over capability.

8.3. Remote imaging

The NY IT security team has just responded to an incident on

one of their servers. Alice, the responding officer, wishes to

image the server. She types:

This command requests an image be created directly on

the evidence server (it will be uploaded using WebDav). The

image is signed using Alice’s certificate and key (which might

need to be unlocked). Note that Alice does not need any

hardware to obtain the image as it is done over the net-

workdshe therefore can respond rapidly.

Bob is an analyst in LA which specializes in filesystem

analysis. As soon as the acquisition is complete, the image

is available for Bob to examine. Bob does not have

permissions to create volumes on the NY evidence server,

so he types:

This creates a new volume on the LA server which contains

a set of Map streams referring to the original evidence. The

new volume is near zero cost but refers to the original image

(which is still stored in NY).

8.4. Rapidly converting a set of DD images

Many hardware devices are available to acquire hard disks

in the field. These often produce a set of uncompressed

images split at a certain size. It is possible to construct a Map

Stream which seamlessly reassembles the logical image from

all the individual disk images. The map stream may be kept in

its own volume, or appended to one (or all) of the image

fragments.

Similarly, each component can be compressed indepen-

dently into its own stream. A single map stream can then be

produced to combine all the component streams into a single

logical stream. This approach can take advantage of multiple

systems to actually do the compression in parallel as each

component is compressed independently.

8.5. Acquisition of RAID disks

Often disks in a system are grouped into RAID

devices, commonly RAID-5 or RAID-0. Previously, if disks

were acquired independently, they would need to be

analyzed using a tool which was able to reassemble RAID

devices.

With the AFF4 format, each of the disks can be acquired

as a separate Image Stream. Finally a tool such as PyFlag

(Cohen, 2008c) may be used to deduce the RAID map,

which can be appended to the AFF4 file as a Map Stream.

This Map Stream can then be opened by any tool to get

a logical view of the RAID, without the tool needing to have

explicit support for RAID reassembling. This approach

enables parallel acquisition of RAID drives, a feature long

desired to handle the vast quantities of data presented

by RAID.

8.6. Cryptographic management of evidence

An AFF4 archive may hold multiple encrypted volumes, each

in its own Encrypted Stream. Each of those streams is

encrypted using a different master key, and therefore can have

different passphrases, and can be assigned to different users

by encrypting the master key with different X509 certificates. It

is also possible for users to create non-encrypted volumes

within the AFF4 volume.

This can be used to enforce access controls in line with

current legislative requirements. For example, within the

same investigation different material is often obtained under

different warrants (e.g. wiretap authorizations are different

from search warrants). Therefore, different investigators and

analysts need different access to the different streams.

However, the analysts may still store the results of their

analysis in an un-encrypted form, or assign others permis-

sions to decrypt their analysis results, without providing

access to the underlying data.

This can be used in sharing meta data (e.g. Map Streams of

files of interest) between analysts, without needing to provide

access to the underlying data.

Listing 4

An Example Statement (URNs and hashes are shortened for illustration).

urn:aff4:34a62f06/00000 aff4:sha256¼þXf4i..7rPCgo ¼
urn:aff4:34a62f06/00000.idx aff4:sha256¼ ptV7xOK6..C7R6Xs ¼
urn:aff4:34a62f06/properties aff4:sha256¼ yoZ..YMtk ¼
urn:aff4:34a62f06 aff4:sha256¼ udajC5C.BVii7psU ¼

fls-i aff4 ‘‘NY case 1’’

aff4imager -i -o http://ny.wan/evidence2.aff4 \

-k http://ny.wan/alice.key \

-c http://ny.wan/alice.crt/dev/sda
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8.7. Logical file acquisition

Alice is responding to an incident on a critical corporate

server. Since the system cannot be taken down for forensic

imaging, Alice must resort to acquiring discrete files instead.

Alice is unable to install and run any acquisition software on

the server due to policy restrictions.

It is still advantageous in this case to bring discrete files

into the AFF4 evidence universe by acquiring each evidence

file using a unique URN. As explained in Section 3, segments

are AFF4 stream objects which are implemented by storing the

data in Zip archive members. It follows, therefore, that

a regular zip file containing files is also a valid AFF4 volume.

So a logical image of files, can be created by any regular Zip

compression program in the field. Once brought into the lab

these volumes are given a volume URN and imported into the

Universal Resolver to provide access to all the files within the

archive. At this stage digital signatures can also be added for

each logical file.

Alice uses windows explorer to obtain a Zip file of the files

of interest. After taking the archive back to the lab, she then

signs the files, and adds a volume URN, making the Zip file

a fully compliant AFF4 volume.

9. Conclusion and future work

This paper describes a significant enhancement to the

Advanced Forensic Format (AFF1). AFF4, extends beyond a file

format to describe a universal framework for evidence

management, offering significant new features such as the

ability to store multiple kinds of evidence from multiple

devices in a single archive, and an improved separation

between the underlying storage mechanism and forensic

software that makes use of evidence stored using AFF. This

improved system allows a single archive of evidence to be used

in a plethora of modalities, including in a single evidence file,

multiple evidence files stored on multiple workstations, and

evidence stored in a relational database or object management

systemdall without making changes to forensic software.

We have developed an open source reference imple-

mentation, but the AFF4 framework is simple enough for

competing implementations. We hope this simplicity

enhances AFF4’s acceptance and adoption as a standard

evidence management platform.
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